For an 84-year-old, Berni Alder is quite busy, as I found when I was setting up a telephone interview with him. The last few weeks have been especially rushed, as Alder was in Washington, D.C., to receive the National Medal of Science from President Barack Obama on Oct. 7.
Alder was among nine recipients of the medal this year, along with another five presented with the National Medal for Technology and Innovation.
The computational pioneer was honored for his six decades of work using computers to simulate the properties of materials. Alder invented molecular dynamics and helped develop Monte Carlo methods, which use computers to reproduce the behavior of atoms and molecules through a large number of random steps. The medal citation also recognized his work using shockwaves to study materials under extreme pressure and temperature.
Alder is a professor emeritus in the 嘿嘿视频 Department of Applied Science, which he helped to set up in 1963; he has worked at the Lawrence Livermore National Laboratory since 1952.
I spoke to Alder after he returned from Washington, D.C.
I understand you鈥檙e still working.
My working habits are 鈥渘ever before lunch 鈥︹. I go to work in the afternoons. Three days a week, I鈥檓 at Livermore, and two days a week at UC Berkeley.
When you started your scientific career, Harry Truman was president. In your career, you鈥檝e seen 12 presidents. How has the influence of science changed over those years?
Well, anyone who鈥檚 lived long enough has seen a few presidents 鈥 one every four or eight years, or six years on average, I suppose!
I think for physical sciences, there was a peak after the war 鈥 up till about 20 years ago. Now the biological sciences are much more prominent. But the physical sciences are still very much needed for biology 鈥 for example, to build the machines (scientists) need for molecular dynamics, crystallography, microscopes, and so on.
For studying the structure of biological molecules, for example?
Exactly. And a lot of physicists are making the transition. For example, Steven Chu, who鈥檚 now U.S. Secretary of Energy, went from physics to studying DNA structure. And he approached it in a way only a physicist鈥檚 mind could do.
Obama seems to me to be one of the most positive presidents about science in my memory. The speech he gave at the medal ceremony 鈥 he gave a very similar speech at the National Academy earlier this year, in April. He鈥檚 clearly very interested in science, and that鈥檚 nice.
Your late brother, Henry, was a professor of mathematics here at 嘿嘿视频. Did you come from a mathematical or scientific background?
My father was a Ph.D. chemist. Henry of course was a mathematician, in number theory. My other brother, Charles, was a dentist 鈥 he was good with his hands.
And you moved to the U.S. in the 1940s? Where did you grow up?
I was born in Germany, but a Swiss citizen. In 1932, we moved to Zurich, just before Hitler came to power. In 1941, we emigrated to the U.S.; it was just before America entered the war 鈥 we had to take a sealed train from Switzerland to Lisbon, and then an American ship.
What are you working on now?
There are two problems I鈥檓 working on now, in hydrodynamics and in quantum mechanics.
Now we can deal with a trillion particles at a time in molecular dynamics 鈥 that鈥檚 big enough to study fluid flow, so we can check the classical equations for fluid dynamics, the Navier-Stokes equations. And it turns out, there are discrepancies between what we can find by molecular dynamics and Navier-Stokes equations, because Navier-Stokes makes approximations 鈥 particularly ignores fluctuations.
Aren鈥檛 Navier-Stokes equations what engineers use for modeling aerodynamics, for example?
Yes 鈥 the big problem is that they ignore fluctuations in density and temperature and these fluctuations can lead you to different outcomes than you would find from the classical equations, particularly at an instability.
In quantum mechanics, I鈥檓 returning to a problem I worked on 30 years ago, which was looking for a new way to solve the Schroedinger equation [which describes how atoms and electrons change over time]. This would mean we can predict the behavior of molecules with much higher precision 鈥 what I call 鈥渃hemical accuracy鈥 鈥 and we can study this with a stochastic (random), probabilistic method.
What are the implications of that?
This has implications for the whole of materials science 鈥 we could predict the properties of materials from first principles.
For example, with water, we could take two hydrogen nuclei and one oxygen nucleus and 8 electrons, and predict the properties of a single molecule of water. And eventually do the same for other materials as well.
How did you become interested in this area in the first place?
The initial problem we were trying to solve was, would a collection of hard spheres go through a phase transition. (The spheres represent atoms and a phase transition would mean going from a solid to a liquid, for example.] This is a generic problem because it involves many particles interacting simultaneously.
At the time [1950s] at meetings of applied mathematicians, they would regularly take a vote and about half thought there would be a phase transition and half not. So it was a controversial area, but the problem could not be solved with mathematics.
The breakthrough was to use simulation 鈥 that turned out to be the crucial thing.
In physics this is called the 鈥渕any body problem,鈥 and Monte Carlo and molecular dynamics are considered among the key developments in applied mathematics in the last century. So resolving the existence of the phase transition was a big development, although it was anticipated, at least, by some of us.
What was totally unexpected came out of molecular dynamics in the late 1960s. One could quantitatively show that fluid flow at an extremely small scale 鈥 100 Angstroms 鈥 over a very short time, one hundredth of a nanosecond, is the same as at scales of centimeters and minutes. That was a total surprise, and it completely anticipated both theory and experiment.
Another area that I worked on early on at Livermore was on shockwaves 鈥 studying materials under very high temperatures and pressures using shockwaves.
Our shockwave experiments showed that diamond in meteorites most likely formed on impact [when meteorites hit the Earth.]
I used to give a talk called 鈥渕illionaire for a microsecond.鈥 Of course you could only recover a miniscule amount of diamond 鈥 the crystals were very small, microcrystals 鈥 if you wanted to be trendy you would call them nanocrystals.
What鈥檚 the difference between molecular dynamics and Monte Carlo simulation?
There is overlap between the two. Monte Carlo, which relies on making a lot of random moves, can only get to an equilibrium state, so you can use it for modeling a molecule but not, for example, for how it changes over time. With molecular dynamics you can do all kinds of problems: whether there are time-dependent changes or equilibrium phase transitions, and so on.
You were one of the founding faculty of the 嘿嘿视频 Department of Applied Science in 1963. What were you trying to achieve?
With Edward Teller and some other Livermore scientists, yes. The original idea was to create a sort of applied physics department.
The Livermore lab had facilities such as electronic computers, magnetic fusion experiments, an explosives station 鈥 big apparatus that students couldn鈥檛 access at universities.
The idea was to get graduate students involved in these big projects. It didn鈥檛 quite work out, though. There鈥檚 the considerable distance between Livermore and Davis, and these big machines are not such a good pedagogical environment, I think.
For a Ph.D., to develop your creativity it鈥檚 better to work in a small team or as an individual. Although there were some fine people who came up through the program.
The current program is more like a regular university department, and that鈥檚 largely located on the Davis campus.
Over the years I have had a number of students through Davis 鈥 I still have a graduate student and postdocs whom I work with.
When you were starting out, 60 years ago, could you have foreseen how powerful computers would become?
Oh no, it was unforeseeable 鈥 computing power has increased by 10 [to the power of] 12 from the first electronic machines at Livermore.
Also what we did not foresee is how these methods would permeate all of physics, chemistry, biology, materials science.
Media Resources
Clifton B. Parker, Dateline, (530) 752-1932, cparker@ucdavis.edu